ON THE BOTTOM SHEAR STRESS DURING LONG WAVE RUNUP AND BACKWASH
نویسندگان
چکیده
منابع مشابه
Dispersive wave runup on non-uniform shores
Historically the finite volume methods have been developed for the numerical integration of conservation laws. In this study we present some recent results on the application of such schemes to dispersive PDEs. Namely, we solve numerically a representative of Boussinesq type equations in view of important applications to the coastal hydrodynamics. Numerical results of the runup of a moderate wa...
متن کاملCharacterizing wave- and current- induced bottom shear stress: U.S. middle Atlantic continental shelf
Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the magnitude, variability, and driving mechanisms of bottom stress and resultant sediment mobility on regional scales using numerical model output. The analysis was applied to the Mi...
متن کاملEffect of a Shallow Water Obstruction on Long Wave Runup and Overland Flow Velocity
A study is presented to examine the one-horizontal dimension effect of a shallow shelf obstacle on nonlinear long wave runup. Due to the large horizontal-vertical aspect ratio of this problem, it is not well suited for experimental analysis, and therefore this study is purely numerical. Simulations are performed for various incident wave conditions, obstacle height and widths, and final beach s...
متن کاملEffect of wave frequency and directional spread on shoreline runup
[1] Wave breaking across the surf zone elevates the mean water level at the shoreline (setup), and drives fluctuations about the mean (runup). Runup often is divided into seaswell (0.04–0.3 Hz) and lower frequency infragravity (0.00– 0.04 Hz) components. With energetic incident waves, runup is dominated by infragravity frequencies, and total water levels (combined setup and runup) can exceed 3 ...
متن کاملEfficient simulations of long wave propagation and runup using a LBM approach on GPGPU hardware
We present an efficient implementation of the Lattice Boltzmann method (LBM) for the numerical simulation of the propagation of long ocean waves (e.g., tsunamis), based on the Nonlinear Shallow Water (NSW) wave equation. The LBM solution of NSW equations is fully nonlinear and it is assumed that the surface elevation is single-valued (hence, waves do not break or overturn). For the treatment of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Coastal Engineering Proceedings
سال: 2011
ISSN: 2156-1028,0589-087X
DOI: 10.9753/icce.v32.currents.47